Best possible inequalities for the harmonic mean of error function

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Best Possible Inequalities among Harmonic, Geometric, Logarithmic and Seiffert Means

In this paper, we find the greatest value α and the least values β , p , q and r in (0,1/2) such that the inequalities L(αa+ (1−α)b,αb+ (1−α)a) < P(a,b) < L(βa + (1− β)b,βb + (1− β)a) , H(pa + (1− p)b, pb + (1− p)a) > G(a,b) , H(qa+ (1− q)b,qb +(1− q)a) > L(a,b) , and G(ra+(1− r)b,rb+(1− r)a) > L(a,b) hold for all a,b > 0 with a = b . Here, H(a,b) , G(a,b) , L(a,b) and P(a,b) denote the harmoni...

متن کامل

Best Possible Inequalities between Generalized Logarithmic Mean and Classical Means

and Applied Analysis 3 Theorem B. For all positive real numbers a and b with a/ b, we have √ G a, b A a, b < √ L a, b I a, b

متن کامل

Some More Inequalities for Arithmetic Mean, Harmonic Mean and Variance

We derive bounds on the variance of a random variable in terms of its arithmetic and harmonic means. Both discrete and continuous cases are considered, and an operator version is obtained. Some refinements of the Kantorovich inequality are obtained. Bounds for the largest and smallest eigenvalues of a positive definite matrix are also obtained.

متن کامل

Optimal inequalities for the power, harmonic and logarithmic means

For all $a,b>0$, the following two optimal inequalities are presented: $H^{alpha}(a,b)L^{1-alpha}(a,b)geq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ H^{alpha}(a,b)L^{1-alpha}(a,b)leq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. Here, $H(a,b)$, $L(a,b)$, and $M_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...

متن کامل

Best Approximation in the Mean by Analytic and Harmonic Functions

For n ≥ 2, let Bn denote the unit ball in R, and for p ≥ 1 let L denote the Banach space of p-summable functions on Bn. Let L p h(Bn) denote the subspace of harmonic functions on Bn that are p-summable. When n = 2, we often write D instead of B2, and we let A denote the Bergman space of analytic functions in L. Let ω be a function in L. We are interested in finding the best approximation to ω i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2014

ISSN: 1029-242X

DOI: 10.1186/1029-242x-2014-525