Best possible inequalities for the harmonic mean of error function
نویسندگان
چکیده
منابع مشابه
Best Possible Inequalities among Harmonic, Geometric, Logarithmic and Seiffert Means
In this paper, we find the greatest value α and the least values β , p , q and r in (0,1/2) such that the inequalities L(αa+ (1−α)b,αb+ (1−α)a) < P(a,b) < L(βa + (1− β)b,βb + (1− β)a) , H(pa + (1− p)b, pb + (1− p)a) > G(a,b) , H(qa+ (1− q)b,qb +(1− q)a) > L(a,b) , and G(ra+(1− r)b,rb+(1− r)a) > L(a,b) hold for all a,b > 0 with a = b . Here, H(a,b) , G(a,b) , L(a,b) and P(a,b) denote the harmoni...
متن کاملBest Possible Inequalities between Generalized Logarithmic Mean and Classical Means
and Applied Analysis 3 Theorem B. For all positive real numbers a and b with a/ b, we have √ G a, b A a, b < √ L a, b I a, b
متن کاملSome More Inequalities for Arithmetic Mean, Harmonic Mean and Variance
We derive bounds on the variance of a random variable in terms of its arithmetic and harmonic means. Both discrete and continuous cases are considered, and an operator version is obtained. Some refinements of the Kantorovich inequality are obtained. Bounds for the largest and smallest eigenvalues of a positive definite matrix are also obtained.
متن کاملOptimal inequalities for the power, harmonic and logarithmic means
For all $a,b>0$, the following two optimal inequalities are presented: $H^{alpha}(a,b)L^{1-alpha}(a,b)geq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ H^{alpha}(a,b)L^{1-alpha}(a,b)leq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. Here, $H(a,b)$, $L(a,b)$, and $M_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...
متن کاملBest Approximation in the Mean by Analytic and Harmonic Functions
For n ≥ 2, let Bn denote the unit ball in R, and for p ≥ 1 let L denote the Banach space of p-summable functions on Bn. Let L p h(Bn) denote the subspace of harmonic functions on Bn that are p-summable. When n = 2, we often write D instead of B2, and we let A denote the Bergman space of analytic functions in L. Let ω be a function in L. We are interested in finding the best approximation to ω i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2014
ISSN: 1029-242X
DOI: 10.1186/1029-242x-2014-525